Integration of Petrochemical and Refinery Plants as an Approach to Compete in Hydrocarbon Market

M. R. Jafari Nasr
Research Institute of Petroleum Industry (RIPI)
Saeed Sahebdelfar, Maryam Takht Ravanchi,
Majid Daftari Beshelli
Petrochemical Research and Technology Company (NPC-RT)

9th Iran Petrochemical Forum
21-22 May 2011, Tehran, Iran
Contents

- Introduction
- Benefits of integration
- Integration challenges
- Global approach
- The petro-refinery in Iran
- Conclusions
Integration drivers for petrochemical industry

- Increased competitive pressures on petrochemical industries due to globalization
- Fluctuations in products' price and high price of energy and feed stocks
- More stringent environmental regulations impacting the operational costs
Refining challenges

- Low margin of refining
- High price of petroleum
- High volatility of feedstocks and products prices
- Environmental concerns
Petrochemical and refinery profits

What Does Integration means?

Possible synergy between Refining & Petrochemical industries to achieve opportunities for more profitability.
Alternative usage of refinery streams in petrochemical industry

<table>
<thead>
<tr>
<th>Refinery Stream</th>
<th>Petrochemical Stream</th>
<th>Alternative Refinery Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCC offgas</td>
<td>Ethylene</td>
<td>Fuel gas</td>
</tr>
<tr>
<td>Refinery propylene (FCC)</td>
<td>Propylene</td>
<td>Alkylation/polygasoline</td>
</tr>
<tr>
<td>Reformate</td>
<td>Benzene, toluene, xylenes</td>
<td>Gasoline blending</td>
</tr>
<tr>
<td>Naphtha and LPG</td>
<td>Ethylene</td>
<td>Gasoline Blending</td>
</tr>
<tr>
<td>Dilute ethylene (FCC & delayed coker offgas)</td>
<td>Ethylbenzene</td>
<td>Fuel gas</td>
</tr>
<tr>
<td>Refinery propylene (FCC product)</td>
<td>Polypropylene, Cumene, Isopropanol, Oligomers</td>
<td>Alkylation</td>
</tr>
<tr>
<td>Butylenes (FCC and delayed coker)</td>
<td>MEK (methyl ethyl ketone)</td>
<td>Alkylation, MTBE</td>
</tr>
<tr>
<td>Butylenes (FCC and delayed coker)</td>
<td>MTBE</td>
<td>Alkylation, MTBE</td>
</tr>
<tr>
<td>Refinery benzene and hydrogen</td>
<td>Cyclohexane</td>
<td>Gasoline blending</td>
</tr>
<tr>
<td>Reformate</td>
<td>o-xylene</td>
<td>Gasoline blending</td>
</tr>
<tr>
<td>Reformate</td>
<td>p-xylene</td>
<td>Gasoline blending</td>
</tr>
<tr>
<td>Kerosine</td>
<td>n-paraffins</td>
<td>Refinery product</td>
</tr>
<tr>
<td>FCC light cycle oil</td>
<td>Naphthalene</td>
<td>Diesel blending</td>
</tr>
</tbody>
</table>

Source: Petrochemcomplex shields refining profits, Oil & Gas Journal; 96 (1998) 62-65
Mutual relationship benefits

- Lowering the costs and improving the efficiency
- Ensuring the security of feed supply to petrochemical industries
- Re-processing of materials
Integrative optimization of refining and petrochemical plants
Potential types of petrochemical-refining integrations

- Process integration (innovative designs considering down-stream petrochemical plants)
- Utility integration (heat, hydrogen, water, steam and electricity)
- Treatment of gas fuel (utilization of hydrogen and hydrocarbons present in gas fuel as petrochemical feedstock)
Process integration

- Max. Olefin Production by Integration of Refinery Crackers & Petrochemical Reformer.
- Recovering more Aromatics by Integration of Extractive Distillation in Petroleum Refineries & Petrochemical Solvents.
- Recovering Aromatic Components by Integration of Steam Cracking Products & BTX Petrochemical Complex and also Blending the Rafinate after Extraction into the Gasoline or Naphtha pool.
Utilities integration

- Up to 60% Energy Saving by Integration of Sources & Sinks of Steam Cracking & Gas Processing.
- Up to 10% Energy Reduction by using Gas Turbine Integration between Petrochemical Units & Ammonia Plants.
- Hydrogen management between Refinery Units & Petrochemical Plants.
Fuel gas upgrading

- Extraction of C_2/C_3 from Refinery FCC off gas Streams to Petrochemical Plants as feed stocks.
- Recovering H_2 from Petroleum Refineries to Petrochemical Plants and vice versa.
Refining/petrochemical process links

Source: Total Raffinaderij Antwerpen, February 29th 2008
Purpose of petrochemical refinery

Refinery aimed at production of petrochemical feedstock

- Propylene production should be maximized.
- Old and small ethylene plants are not competitive.
- Demand of petrochemical products, especially propylene, will increase.
The petrochemical refinery

Conventional Scheme

Refinery

Maximize Gasoline/Fuel Production

Crude → Refinery → Gasoline, Kerosene, Gas Oil, Fuel Oil

Steam Cracker

Naphtha

Imported Naphtha

Naphtha

Petrochemical Feedstock

Refinery and Petrochemical Integration

Petrochemical Refinery

Maximize Petrochemical Production

Crude → Petrochemical Refinery → Petrochemical Feedstock

Source: Toyo Engineering Corporation, Petrochemical Refinery, 2011
Basic building blocks for petrochemicals:

- Olefins
 - Ethylene
 - Propylene
 - Butadiene
- Aromatics
 - Benzene
 - Xylenes
- Synthesis gas
Integration challenges

- Integrated plants are more complex and, consequently, could face with some technical difficulties
- They are operationally less flexible
- Integration may result in conflicting of planning and operational objectives and diffusing of business focus
Global approach

- Several important oil companies have employed the integration of refining-petrochemicals in different ways
- Many of the new licenses are offered in integrated form or are capable of adopting integration mode of operation
Petrochemical – refinery integration in Europe

Lurgi’s integrated process for co-production of methanol and ammonia

Source: www.lurgi.com
Overall advantages of this integrated technology

- Large scale production of more than one product;
- Cost reduction due to shared process equipment and utilities;
- Reduction in gas consumption and CO₂ emissions to atmosphere;
- High efficiency;
- Flexibility in methanol and ammonia productions;
- Pure CO₂ production as a by-product to be used in methanol synthesis or ammonia conversion to urea.
ATOFINA/UOP Olefin Cracking Process

- Integration of UOP OCP-Total Petrochemicals into steam cracking allows maximizing the propylene to ethylene yield ratio.

- Heavier by-product olefins of MTO are converted to propylene and some associated ethylene in the Olefin Cracking process.
Integrated plant of Ras Tanura refinery complex and Jua`ymah gas processing plant

Source: www.sudiaramco.com
Ras Tanura refinery complex and Jua`ymah gas processing plant

- Saudi Aramco Co. - Dow Chemicals joint project
- Ras Tanura refinery delivers naphtha, vacuum gas oil (VGO) and reformate to petrochemical plants from which more than 30 value-added products will be produced.
By-products will recycle back to refinery for re-processing. This integrated plant, valued $20 billion.

- Ethylene, propylene, aromatic and chlorine derivatives are main products of this integrated plant.
Iran situation: Historical

- Construction of petrochemical complexes adjacent to refineries for feed provision is historical samples of this approach.
- The importance of integration as a necessity rather than an option is realized both by NIORDC and NPC.
- Propylene deficiency due to increased ethane crackers capacity
Northern Isfahan Petro-Refinery Complex (NIPRC)

- Two olefin and aromatic petrochemical units
- One refinery unit (150,000 bpd)
- Seven related down-stream chemical units
- An investment of more than 4 billion Euros+4500 billion Rials.
- 2.4 billion m³ of NG per year
Northern Isfahan Petro-Refinery Complex (NIPRC)-cont.,

- Refinery section products: C_4, gasoline, white oil, fuel oil, gas oil, naphtha, sulfur, lube cut and grease are produced from crude oil.

- Petrochemical section products: polyethylene, polypropylene, polybutadiene, polyester and gasoline, acetaldehyde, acetic acid, vinyl acetate, butanol, 2 ethyl hexanol, ethylene oxide and glycols are produced from natural gas.
Conclusions

- Integrated refining-petrochemical plants will balance one another
- Extend the petrochemical feedstock to unusual hydrocarbon sources such as heavy oils and residues
- By-products can be re-processed to increase more valuable products
- Employing more sophisticated process technologies and catalyst formulations required bringing about the licensors to develop joint venture cooperation
Thanks for your attention

Presenter:
Saeed Sahebdelfar, Petrochemical Research and Technology Co.
Catalysis Research Group
s.sahebdel@npc-rt.ir